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Abstract
The confluent algorithm, a degenerate case of the second-order supersymmetric
quantum mechanics, is studied. It is shown that the transformation function
must asymptotically vanish to induce non-singular final potentials. The
technique can be used to create a single level above the initial ground state
energy. The method is applied to the free particle, one-soliton well and
harmonic oscillator.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. Introduction

The second-order supersymmetric quantum mechanics (2-SUSY QM), which involves second-
order differential intertwining operators [1–8], has proved useful to surpass the difficulty of
‘modifying’ the excited state levels inherent to the standard first-order 1-SUSY QM. In fact,
in the 2-SUSY treatment we do not respect the restrictions imposed by 1-SUSY on the
transformation functions u1(x), u2(x), i.e., they can have nodes but induce a non-singular
2-SUSY transformation [9–12]. In this way, potentials with two extra bound states above the
ground state energy of the initial Hamiltonian H (or above the lowest band edge if V (x) is
periodic) have been recently generated [9, 11, 12]. A different atypical method employing
two complex conjugate factorization energies has been implemented as well generating in this
case families of real isospectral 2-SUSY partner potentials of V (x) [13].

There is yet another situation worth studying in detail, namely, when the two factorization
energies tend to a common real value ε. This so-called confluent algorithm was used to generate
a particular family of isospectral oscillator potentials [14]. However, we have not detected a
generic analysis (for arbitrary factorization energies ε) of the properties of the transformation
function u(x) ensuring that the final potential will be non-singular. This is the subject of the
present paper, which has been organized as follows. In section 2, an alternative view of the
confluent 2-SUSY algorithm will be elaborated upon. The restrictions imposed onto u(x)
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in order to obtain non-singular final potentials will be analysed in section 3. In section 4,
we will apply the technique to the free particle, one-soliton well and standard harmonic
oscillator.

2. Second-order supersymmetric quantum mechanics

The second-order supersymmetric quantum mechanics (2-SUSY QM) is a particular
realization of the standard supersymmetry algebra with two generators [1–6]:

{Qj,Qk} = δjkHss [Hss,Qj ] = 0 j, k = 1, 2 (1)

where Q1 = (Q† + Q)/
√

2,Q2 = (Q† − Q)/(i
√

2),

Q =
(

0 A

0 0

)
Q† =

(
0 0
A† 0

)
(2)

Hss =
(

AA† 0
0 A†A

)
=

(
(H̃ − ε1)(H̃ − ε2) 0

0 (H − ε1)(H − ε2)

)
(3)

and H, H̃ are two intertwined Schrödinger Hamiltonians:

H̃A = AH (4)

H̃ = − d2

dx2
+ Ṽ (x) H = − d2

dx2
+ V (x) (5)

A = d2

dx2
+ η(x)

d

dx
+ γ (x). (6)

The relations between η(x), γ (x), V (x) and Ṽ (x), are

Ṽ = V + 2η′ (7)

γ = d − V + η2/2 − η′/2 (8)

ηη′′ − (η′)2/2 + η2(η2/2 − 2η′ − 2V + 2d) + 2c = 0 (9)

where, in terms of c ∈ R, d ∈ R, the factorization energies read ε1 = d +
√

c, ε2 = d − √
c.

Suppose that V (x) is a solvable potential given exactly, then Ṽ (x) will be effectively
determined if we find explicit solutions η(x) to the nonlinear second-order differential equation
(9). Depending on the sign of c, two essentially different cases arise.

If c �= 0 then ε1 �= ε2, and we must look for solutions of the two Riccati equations:

β ′
i + β2

i = V − εi i = 1, 2. (10)

Having β1(x), β2(x), we get two different equations for η(x) (see, e.g., [6, 13])

η′ = η2 + 2β1η + ε2 − ε1 (11)

η′ = η2 + 2β2η + ε1 − ε2. (12)

By subtracting them, we arrive at a finite difference algorithm for η(x)

η(x) = (ε1 − ε2)/(β1 − β2). (13)

On the other hand, the confluent case arises for c = 0 implying that ε1 = ε2 ≡ ε = d . In
this situation, we look for solutions to just one Riccati equation [14]

β ′ + β2 = V − ε (14)
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and η(x) satisfies an equation arising when ε1 = ε2 in (11) and (12):

η′ = η2 + 2βη. (15)

This is the Bernoulli equation, whose general solution is given by

η(x) = −w′(x)/w(x) (16)

where

w(x) = w0 −
∫

e2
∫

β(x) dx dx. (17)

In the next section we will analyse the conditions which grant that the confluent 2-SUSY
transformations are non-singular. This provides the simplest way of ensuring that, departing
from an exactly solvable initial potential V (x), we arrive at an exactly solvable regular Ṽ (x)

as well (see, e.g., the discussion in [15]).

3. Confluent non-singular transformations

Let us first express the confluent formulae of section 2 in terms of solutions of the initial
Schrödinger equation obtained from (14) by the change β(x) = u′(x)/u(x):

−u′′(x) + V (x)u(x) = εu(x). (18)

Thus, up to an unimportant constant factor (see (16)), the key function w(x) becomes

w(x) = w0 −
∫ x

x0

u2(y) dy (19)

and the confluent 2-SUSY potential Ṽ (x) is given by

Ṽ (x) = V (x) − 2[w′(x)/w(x)]′. (20)

It is clear now that in order to arrive at real non-singular potentials Ṽ (x) we have to use
real solutions u(x) of (18) inducing a nodeless w(x). Let us note that

w′(x) = −u2(x) (21)

meaning that w(x) is decreasing monotonically, so the simplest way of avoiding its zeros is
to look for the appropriate asymptotic behaviour for u(x). Two different situations are worth
considering.

(i) Suppose first that ε = Em is one of the discrete eigenvalues of H and the transformation
function is the corresponding normalized physical eigenfunction, u(x) = ψm(x). Denote by
ν+ the following finite integral:

ν+ ≡
∫ ∞

x0

u2(y) dy. (22)

It is straightforward to show that

lim
x→−∞ w(x) = w0 − ν+ + 1 ≡ ν + 1 (23)

and

lim
x→+∞ w(x) = ν. (24)

It turns out that w(x) is nodeless if either both limits are positive or both negative, leading to
the ν-domain where the confluent 2-SUSY transformation is non-singular:

ν ∈ R\(−1, 0) = (−∞,−1] ∪ [0,∞). (25)
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(ii) Suppose now that the transformation function u(x) is a non-normalizable solution of
(18) associated with a real factorization energy ε �∈ Sp(H) such that

lim
x→∞ u(x) = 0 and ν+ ≡

∫ ∞

x0

u2(y) dy < ∞. (26)

If this is the case we can show that

lim
x→−∞ w(x) = w0 +

∫ x0

−∞
u2(y) dy = ∞ (27)

and

lim
x→+∞ w(x) = w0 − ν+ ≡ ν. (28)

By comparing both limits and taking into account that w(x) is decreasing monotonically, it
turns out that w(x) is nodeless if

ν � 0. (29)

Let us note that the same ν-restriction holds in the case when

lim
x→−∞ u(x) = 0 and ν− ≡

∫ x0

−∞
u2(y) dy < ∞ (30)

though now ν ≡ −(w0 + ν−).
Once the regularity of the confluent 2-SUSY algorithm is assured,we analyse the spectrum

of H̃ . From the intertwining relationship (4) and the factorizations in (3) we immediately
obtain normalized eigenstates |ψ̃n〉 of H̃ provided that ν satisfies either (25) in case (i) or (29)
in case (ii) and A|ψn〉 �= 0:

|ψ̃n〉 = (En − ε)−1A|ψn〉 (31)

(so in case (i) we cannot obtain |ψ̃m〉 of (31) because A|ψm〉 = 0). The orthonormal set
{|ψ̃n〉, n = 0, 1, 2, . . .} so constructed is not automatically complete (we have yet to analyse
the existence or not of an extra normalizable function ψ̃ belonging to the Kernel of A† which
is orthogonal to all the |ψ̃n〉, n = 0, 1, 2, . . .). To find ψ̃ explicitly, let us factorize A† as
follows:

A† =
[

d

dx
+ β(x)

][
d

dx
− β(x) − η(x)

]
. (32)

It turns out that the ψ̃ ∈ Ker(A†) we are looking for is annihilated by the second factor operator
of (32)

ψ̃(x) = n0 e
∫

[β(x)+η(x)] dx = n0u(x)/w(x) (33)

where n0 is a constant. It is straightforward to check that ψ̃(x) is a normalized eigenfunction
of H̃ with eigenvalue ε for ν ∈ R\[−1, 0] in case (i) with n0 = √

ν(ν + 1) and for ν > 0 in
case (ii) with n0 = √

ν. On the other hand, ψ̃(x) becomes non-normalizable for ν = −1, 0
in case (i) or for ν = 0 in case (ii). Thus, when ε = Em and u(x) = ψm(x) it turns out
that Sp(H̃ ) = Sp(H) if ν ∈ R\ [−1, 0] while the level Em is not present in Sp(H̃ ) for
ν = −1, 0 (in this case Em has been ‘deleted’ in order to generate H̃ ). On the other hand,
when ε �∈ Sp(H) and u(x) obeys either (26) or (30) it turns out that Sp(H̃ ) = {ε} ∪ Sp(H)

for ν > 0 but Sp(H̃ ) = Sp(H) for ν = 0. For all the other ν-values (ν ∈ (−1, 0) in case (i)
and ν < 0 in case (ii)) it gives rise to a singularity in Ṽ (x) due to the existence of a zero
in w(x). We note, in particular, that case (ii) allows us to generate a single level above the
ground state energy of H, a mechanism which cannot be directly implemented in the 1-SUSY
treatment.
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Let us remark that our confluent 2-SUSY procedure coincides with the Abraham–Moses
generation technique of creating, deleting or changing the normalization of a single energy
level [16] (see also [17, 18]). The same procedure, known as binary Darboux transformations
[19], has been employed to generate bound states embedded in the continuum [20–22].

4. The simplest applications

Let us now analyse the simplest applications of the confluent 2-SUSY algorithm.
(a) Consider first the free particle for which V (x) = 0. For a fixed arbitrary ε < 0 which

does not belong to Sp(H) there are two asymptotically vanishing transformation functions:

u(x) =
√

2k e±kx ε = −k2. (34)

A direct calculation leads to

w(x) = ∓2 e±k(x+x1) cosh[k(x − x1)] (35)

where ν = e±2kx1 > 0. By substituting these expressions into (20) we obtain the Pöschl–Teller
potential in both cases

Ṽ (x) = −2k2 sech2[k(x − x1)] (36)

which has a bound state at ε = −k2.
(b) Now take the previous Pöschl–Teller as the initial potential:

V (x) = −2k2
0 sech2(k0x) (37)

and denote the ground state energy as usual, E0 = −k2
0.

Let us consider first the case when ε = E0 and u(x) is the normalized ground state:

u(x) =
√

k0

2
sech(k0x). (38)

A straightforward calculation leads to

w(x) = ν + 1
2 − 1

2 tanh(k0x) (39)

which produces once again the Pöschl–Teller potential:

Ṽ (x) = −2k2
0 sech2k0(x − x1) (40)

where tanh(k0x1) = 1/(1 + 2ν).
Suppose now that ε = −k2 �= E0, k ∈ R. The solutions with the right asymptotic

behaviour are here:

u(x) =
√

2k e±kx[k0 tanh(k0x) ∓ k] (41)

leading to

w(x) = ∓{ν + e±2kx[k2 + k2
0 ∓ 2kk0 tanh(k0x)]}. (42)

It turns out that the confluent 2-SUSY potential Ṽ (x) acquires the Bargmann form

Ṽ (x) = −2(k2
2 − k2

1)[k
2
1 sech2k1(x − x1) + k2

2 csch2k2(x − x2)]

[k1 tanh k1(x − x1) − k2 coth k2(x − x2)]2
(43)

where for k > k0 we need to take k1 = k0, k2 = k, ν = (k2 − k2
0) e±2kx2 , e±2k0x1 =

(k + k0)/(k − k0) while for k < k0 we require k1 = k, k2 = k0, ν = (k2
0 − k2) e±2kx1 , e±2k0x2 =

(k + k0)/(k0 − k).
(c) Finally, let us analyse the harmonic oscillator potential:

V (x) = x2 (44)
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Figure 1. The confluent 2-SUSY partner potential (black curve) isospectral to the oscillator (grey
curve) generated by employing the normalized eigenfunction (45) for n = 3, ε = E3 = 7 and
ν = −5/4.

which has a purely discrete spectrum composed of En = 2n + 1, n = 0, 1, . . . and
eigenfunctions given by

ψn(x) = (
√

π2nn!)−1/2 e−x2/2Hn(x) n = 0, 1, . . . (45)

where Hn(x) are the Hermite polynomials.
Let us suppose first that ε = Em with m fixed, u(x) being the corresponding normalized

eigenfunction ψm(x) of (45). The calculation of (19) with x0 = 0 leads to

w(x) = ν +
1

2
− x

m0∑
s=0

(−1)m0+s	(m1)(2x)2m1−2s−1

2δ+1
√

π(m1 − s)	
(
δ + 1

2

)
(m − 2s)!s!

× 2F2

(
m1,m1 − s; δ +

1

2
,m1 + 1 − s; −x2

)
(46)

where 2F2(a1, a2; b1, b2; z) is a generalized hypergeometric function [23], m0 = (m −
δ)/2,m1 = (m + δ + 1)/2, δ = 0 if m is even but δ = 1 if m is odd. It turns out that
Ṽ (x) is isospectral to the oscillator potential, a case illustrated in figure 1 for ε = 7 (m = 3)

and ν = −5/4. Let us note the already involved explicit expression of w(x) in (46).

In turn, for ε �∈ Sp(H) the asymptotically vanishing Schrödinger solutions become

u(x) = e− x2

2

[
1F1

(
1 − ε

4
,

1

2
; x2

)
± 2x

	
(

3−ε
4

)
	

(
1−ε

4

) 1F1

(
3 − ε

4
,

3

2
; x2

)]
(47)

where 1F1(a, c; z) is the Kummer hypergeometric series. The explicit expression for w(x) is
too involved to be shown here (three infinite sums of kind (46) arise in this case). Alternatively,
we performed a numeric calculation of Ṽ (x) for ε = 8 taking the solution u(x) of (47) with
the upper plus sign and w0 = −5, x0 = 0 in (19) (see figure 2). The spectrum of Ṽ (x) is
composed of the oscillator eigenenergies En = 2n + 1, n = 0, 1, . . . plus a new level at ε = 8.
This illustrates clearly the possibility offered by the confluent 2-SUSY algorithm of creating
one single level above the ground state energy of H.

We conclude that the second-order supersymmetric quantum mechanics is a powerful
tool for designing in a simple way potentials with given spectra, a subject supplying us with
solvable models with possible applications in the physical sciences (see e.g. [24]).
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Figure 2. The confluent 2-SUSY partner potential Ṽ (x) (black curve) of the oscillator (grey
curve) generated by employing the Schrödinger solution (47) with the upper + sign and
ε = 8, w0 = −5, x0 = 0. The potential Ṽ (x) has an extra bound state at ε = 8 compared
with the oscillator spectrum.
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