The confluent algorithm in second-order supersymmetric quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 362537
(http://iopscience.iop.org/0305-4470/36/10/313)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:27

Please note that terms and conditions apply.

The confluent algorithm in second-order supersymmetric quantum mechanics

David J Fernández C ${ }^{1}$ and Encarnación Salinas-Hernández ${ }^{2}$
${ }^{1}$ Departamento de Física, CINVESTAV, AP 14-740, 07000 México DF, Mexico
${ }^{2}$ Escuela Superior de Física y Matemáticas and Escuela Superior de Cómputo, Instituto Politécnico Nacional Ed. 9, UP Adolfo López Mateos, 07738 México DF, Mexico

Received 13 January 2003
Published 26 February 2003
Online at stacks.iop.org/JPhysA/36/2537

Abstract

The confluent algorithm, a degenerate case of the second-order supersymmetric quantum mechanics, is studied. It is shown that the transformation function must asymptotically vanish to induce non-singular final potentials. The technique can be used to create a single level above the initial ground state energy. The method is applied to the free particle, one-soliton well and harmonic oscillator.

PACS numbers: $03.65 . \mathrm{Ge}, 03.65 . \mathrm{Fd}, 03.65 . \mathrm{Ca}$

1. Introduction

The second-order supersymmetric quantum mechanics (2-SUSY QM), which involves secondorder differential intertwining operators [1-8], has proved useful to surpass the difficulty of 'modifying' the excited state levels inherent to the standard first-order 1-SUSY QM. In fact, in the 2-SUSY treatment we do not respect the restrictions imposed by 1-SUSY on the transformation functions $u_{1}(x), u_{2}(x)$, i.e., they can have nodes but induce a non-singular 2-SUSY transformation [9-12]. In this way, potentials with two extra bound states above the ground state energy of the initial Hamiltonian H (or above the lowest band edge if $V(x)$ is periodic) have been recently generated [9,11, 12]. A different atypical method employing two complex conjugate factorization energies has been implemented as well generating in this case families of real isospectral 2-SUSY partner potentials of $V(x)$ [13].

There is yet another situation worth studying in detail, namely, when the two factorization energies tend to a common real value ϵ. This so-called confluent algorithm was used to generate a particular family of isospectral oscillator potentials [14]. However, we have not detected a generic analysis (for arbitrary factorization energies ϵ) of the properties of the transformation function $u(x)$ ensuring that the final potential will be non-singular. This is the subject of the present paper, which has been organized as follows. In section 2, an alternative view of the confluent 2-SUSY algorithm will be elaborated upon. The restrictions imposed onto $u(x)$
in order to obtain non-singular final potentials will be analysed in section 3. In section 4, we will apply the technique to the free particle, one-soliton well and standard harmonic oscillator.

2. Second-order supersymmetric quantum mechanics

The second-order supersymmetric quantum mechanics (2-SUSY QM) is a particular realization of the standard supersymmetry algebra with two generators [1-6]:

$$
\begin{equation*}
\left\{Q_{j}, Q_{k}\right\}=\delta_{j k} H_{\mathrm{ss}} \quad\left[H_{\mathrm{ss}}, Q_{j}\right]=0 \quad j, k=1,2 \tag{1}
\end{equation*}
$$

where $Q_{1}=\left(Q^{\dagger}+Q\right) / \sqrt{2}, Q_{2}=\left(Q^{\dagger}-Q\right) /(\mathrm{i} \sqrt{2})$,

$$
\begin{align*}
& Q=\left(\begin{array}{ll}
0 & A \\
0 & 0
\end{array}\right) \quad Q^{\dagger}=\left(\begin{array}{cc}
0 & 0 \\
A^{\dagger} & 0
\end{array}\right) \tag{2}\\
& H_{\mathrm{ss}}=\left(\begin{array}{cc}
A A^{\dagger} & 0 \\
0 & A^{\dagger} A
\end{array}\right)=\left(\begin{array}{cc}
\left(\tilde{H}-\epsilon_{1}\right)\left(\tilde{H}-\epsilon_{2}\right) & 0 \\
0 & \left(H-\epsilon_{1}\right)\left(H-\epsilon_{2}\right)
\end{array}\right) \tag{3}
\end{align*}
$$

and H, \widetilde{H} are two intertwined Schrödinger Hamiltonians:

$$
\begin{align*}
& \widetilde{H} A=A H \tag{4}\\
& \widetilde{H}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\widetilde{V}(x) \quad H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x) \tag{5}\\
& A=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\eta(x) \frac{\mathrm{d}}{\mathrm{~d} x}+\gamma(x) . \tag{6}
\end{align*}
$$

The relations between $\eta(x), \gamma(x), V(x)$ and $\widetilde{V}(x)$, are

$$
\begin{align*}
& \widetilde{V}=V+2 \eta^{\prime} \tag{7}\\
& \gamma=d-V+\eta^{2} / 2-\eta^{\prime} / 2 \tag{8}\\
& \eta \eta^{\prime \prime}-\left(\eta^{\prime}\right)^{2} / 2+\eta^{2}\left(\eta^{2} / 2-2 \eta^{\prime}-2 V+2 d\right)+2 c=0 \tag{9}
\end{align*}
$$

where, in terms of $c \in \mathbb{R}, d \in \mathbb{R}$, the factorization energies read $\epsilon_{1}=d+\sqrt{c}, \epsilon_{2}=d-\sqrt{c}$. Suppose that $V(x)$ is a solvable potential given exactly, then $\widetilde{V}(x)$ will be effectively determined if we find explicit solutions $\eta(x)$ to the nonlinear second-order differential equation (9). Depending on the sign of c, two essentially different cases arise.

If $c \neq 0$ then $\epsilon_{1} \neq \epsilon_{2}$, and we must look for solutions of the two Riccati equations:

$$
\begin{equation*}
\beta_{i}^{\prime}+\beta_{i}^{2}=V-\epsilon_{i} \quad i=1,2 \tag{10}
\end{equation*}
$$

Having $\beta_{1}(x), \beta_{2}(x)$, we get two different equations for $\eta(x)$ (see, e.g., [6, 13])

$$
\begin{align*}
& \eta^{\prime}=\eta^{2}+2 \beta_{1} \eta+\epsilon_{2}-\epsilon_{1} \tag{11}\\
& \eta^{\prime}=\eta^{2}+2 \beta_{2} \eta+\epsilon_{1}-\epsilon_{2} . \tag{12}
\end{align*}
$$

By subtracting them, we arrive at a finite difference algorithm for $\eta(x)$

$$
\begin{equation*}
\eta(x)=\left(\epsilon_{1}-\epsilon_{2}\right) /\left(\beta_{1}-\beta_{2}\right) . \tag{13}
\end{equation*}
$$

On the other hand, the confluent case arises for $c=0$ implying that $\epsilon_{1}=\epsilon_{2} \equiv \epsilon=d$. In this situation, we look for solutions to just one Riccati equation [14]

$$
\begin{equation*}
\beta^{\prime}+\beta^{2}=V-\epsilon \tag{14}
\end{equation*}
$$

and $\eta(x)$ satisfies an equation arising when $\epsilon_{1}=\epsilon_{2}$ in (11) and (12):

$$
\begin{equation*}
\eta^{\prime}=\eta^{2}+2 \beta \eta . \tag{15}
\end{equation*}
$$

This is the Bernoulli equation, whose general solution is given by

$$
\begin{equation*}
\eta(x)=-w^{\prime}(x) / w(x) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=w_{0}-\int \mathrm{e}^{2 \int \beta(x) \mathrm{d} x} \mathrm{~d} x \tag{17}
\end{equation*}
$$

In the next section we will analyse the conditions which grant that the confluent 2-SUSY transformations are non-singular. This provides the simplest way of ensuring that, departing from an exactly solvable initial potential $V(x)$, we arrive at an exactly solvable regular $\widetilde{V}(x)$ as well (see, e.g., the discussion in [15]).

3. Confluent non-singular transformations

Let us first express the confluent formulae of section 2 in terms of solutions of the initial Schrödinger equation obtained from (14) by the change $\beta(x)=u^{\prime}(x) / u(x)$:

$$
\begin{equation*}
-u^{\prime \prime}(x)+V(x) u(x)=\epsilon u(x) \tag{18}
\end{equation*}
$$

Thus, up to an unimportant constant factor (see (16)), the key function $w(x)$ becomes

$$
\begin{equation*}
w(x)=w_{0}-\int_{x_{0}}^{x} u^{2}(y) \mathrm{d} y \tag{19}
\end{equation*}
$$

and the confluent 2-SUSY potential $\widetilde{V}(x)$ is given by

$$
\begin{equation*}
\widetilde{V}(x)=V(x)-2\left[w^{\prime}(x) / w(x)\right]^{\prime} \tag{20}
\end{equation*}
$$

It is clear now that in order to arrive at real non-singular potentials $\tilde{V}(x)$ we have to use real solutions $u(x)$ of (18) inducing a nodeless $w(x)$. Let us note that

$$
\begin{equation*}
w^{\prime}(x)=-u^{2}(x) \tag{21}
\end{equation*}
$$

meaning that $w(x)$ is decreasing monotonically, so the simplest way of avoiding its zeros is to look for the appropriate asymptotic behaviour for $u(x)$. Two different situations are worth considering.
(i) Suppose first that $\epsilon=E_{m}$ is one of the discrete eigenvalues of H and the transformation function is the corresponding normalized physical eigenfunction, $u(x)=\psi_{m}(x)$. Denote by v_{+}the following finite integral:

$$
\begin{equation*}
v_{+} \equiv \int_{x_{0}}^{\infty} u^{2}(y) \mathrm{d} y . \tag{22}
\end{equation*}
$$

It is straightforward to show that

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} w(x)=w_{0}-v_{+}+1 \equiv v+1 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} w(x)=v \tag{24}
\end{equation*}
$$

It turns out that $w(x)$ is nodeless if either both limits are positive or both negative, leading to the v-domain where the confluent 2-SUSY transformation is non-singular:

$$
\begin{equation*}
v \in \mathbb{R} \backslash(-1,0)=(-\infty,-1] \cup[0, \infty) \tag{25}
\end{equation*}
$$

(ii) Suppose now that the transformation function $u(x)$ is a non-normalizable solution of (18) associated with a real factorization energy $\epsilon \notin \operatorname{Sp}(H)$ such that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} u(x)=0 \quad \text { and } \quad v_{+} \equiv \int_{x_{0}}^{\infty} u^{2}(y) \mathrm{d} y<\infty . \tag{26}
\end{equation*}
$$

If this is the case we can show that

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} w(x)=w_{0}+\int_{-\infty}^{x_{0}} u^{2}(y) \mathrm{d} y=\infty \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} w(x)=w_{0}-v_{+} \equiv v \tag{28}
\end{equation*}
$$

By comparing both limits and taking into account that $w(x)$ is decreasing monotonically, it turns out that $w(x)$ is nodeless if

$$
\begin{equation*}
v \geqslant 0 \tag{29}
\end{equation*}
$$

Let us note that the same v-restriction holds in the case when

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} u(x)=0 \quad \text { and } \quad v_{-} \equiv \int_{-\infty}^{x_{0}} u^{2}(y) \mathrm{d} y<\infty \tag{30}
\end{equation*}
$$

though now $v \equiv-\left(w_{0}+v_{-}\right)$.
Once the regularity of the confluent 2-SUSY algorithm is assured, we analyse the spectrum of \widetilde{H}. From the intertwining relationship (4) and the factorizations in (3) we immediately obtain normalized eigenstates $\left|\widetilde{\psi}_{n}\right\rangle$ of \widetilde{H} provided that v satisfies either (25) in case (i) or (29) in case (ii) and $A\left|\psi_{n}\right\rangle \neq 0$:

$$
\begin{equation*}
\left|\tilde{\psi}_{n}\right\rangle=\left(E_{n}-\epsilon\right)^{-1} A\left|\psi_{n}\right\rangle \tag{31}
\end{equation*}
$$

(so in case (i) we cannot obtain $\left|\widetilde{\psi}_{m}\right\rangle$ of (31) because $A\left|\psi_{m}\right\rangle=0$). The orthonormal set $\left\{\left|\tilde{\psi}_{n}\right\rangle, n=0,1,2, \ldots\right\}$ so constructed is not automatically complete (we have yet to analyse the existence or not of an extra normalizable function $\widetilde{\psi}$ belonging to the Kernel of A^{\dagger} which is orthogonal to all the $\left.\left|\widetilde{\psi}_{n}\right\rangle, n=0,1,2, \ldots\right)$. To find $\widetilde{\psi}$ explicitly, let us factorize A^{\dagger} as follows:

$$
\begin{equation*}
A^{\dagger}=\left[\frac{\mathrm{d}}{\mathrm{~d} x}+\beta(x)\right]\left[\frac{\mathrm{d}}{\mathrm{~d} x}-\beta(x)-\eta(x)\right] \tag{32}
\end{equation*}
$$

It turns out that the $\tilde{\psi} \in \operatorname{Ker}\left(A^{\dagger}\right)$ we are looking for is annihilated by the second factor operator of (32)

$$
\begin{equation*}
\widetilde{\psi}(x)=n_{0} \mathrm{e}^{\int[\beta(x)+\eta(x)] \mathrm{d} x}=n_{0} u(x) / w(x) \tag{33}
\end{equation*}
$$

where n_{0} is a constant. It is straightforward to check that $\widetilde{\psi}(x)$ is a normalized eigenfunction of \widetilde{H} with eigenvalue ϵ for $v \in \mathbb{R} \backslash[-1,0]$ in case (i) with $n_{0}=\sqrt{v(v+1)}$ and for $v>0$ in case (ii) with $n_{0}=\sqrt{v}$. On the other hand, $\widetilde{\psi}(x)$ becomes non-normalizable for $v=-1,0$ in case (i) or for $v=0$ in case (ii). Thus, when $\epsilon=E_{m}$ and $u(x)=\psi_{m}(x)$ it turns out that $\operatorname{Sp}(\widetilde{H})=\operatorname{Sp}(H)$ if $v \in \mathbb{R} \backslash[-1,0]$ while the level E_{m} is not present in $\operatorname{Sp}(\widetilde{H})$ for $v=-1,0$ (in this case E_{m} has been 'deleted' in order to generate \tilde{H}). On the other hand, when $\epsilon \notin \operatorname{Sp}(H)$ and $u(x)$ obeys either (26) or (30) it turns out that $\operatorname{Sp}(\widetilde{H})=\{\epsilon\} \cup \operatorname{Sp}(H)$ for $v>0$ but $\operatorname{Sp}(\widetilde{H})=\operatorname{Sp}(H)$ for $v=0$. For all the other v-values $(v \in(-1,0)$ in case (i) and $v<0$ in case (ii)) it gives rise to a singularity in $\widetilde{V}(x)$ due to the existence of a zero in $w(x)$. We note, in particular, that case (ii) allows us to generate a single level above the ground state energy of H, a mechanism which cannot be directly implemented in the 1-SUSY treatment.

Let us remark that our confluent 2-SUSY procedure coincides with the Abraham-Moses generation technique of creating, deleting or changing the normalization of a single energy level [16] (see also [17, 18]). The same procedure, known as binary Darboux transformations [19], has been employed to generate bound states embedded in the continuum [20-22].

4. The simplest applications

Let us now analyse the simplest applications of the confluent 2-SUSY algorithm.
(a) Consider first the free particle for which $V(x)=0$. For a fixed arbitrary $\epsilon<0$ which does not belong to $\mathrm{Sp}(H)$ there are two asymptotically vanishing transformation functions:

$$
\begin{equation*}
u(x)=\sqrt{2 k} \mathrm{e}^{ \pm k x} \quad \epsilon=-k^{2} \tag{34}
\end{equation*}
$$

A direct calculation leads to

$$
\begin{equation*}
w(x)=\mp 2 \mathrm{e}^{ \pm k\left(x+x_{1}\right)} \cosh \left[k\left(x-x_{1}\right)\right] \tag{35}
\end{equation*}
$$

where $v=\mathrm{e}^{ \pm 2 k x_{1}}>0$. By substituting these expressions into (20) we obtain the Pöschl-Teller potential in both cases

$$
\begin{equation*}
\widetilde{V}(x)=-2 k^{2} \operatorname{sech}^{2}\left[k\left(x-x_{1}\right)\right] \tag{36}
\end{equation*}
$$

which has a bound state at $\epsilon=-k^{2}$.
(b) Now take the previous Pöschl-Teller as the initial potential:

$$
\begin{equation*}
V(x)=-2 k_{0}^{2} \operatorname{sech}^{2}\left(k_{0} x\right) \tag{37}
\end{equation*}
$$

and denote the ground state energy as usual, $E_{0}=-k_{0}^{2}$.
Let us consider first the case when $\epsilon=E_{0}$ and $u(x)$ is the normalized ground state:

$$
\begin{equation*}
u(x)=\sqrt{\frac{k_{0}}{2}} \operatorname{sech}\left(k_{0} x\right) \tag{38}
\end{equation*}
$$

A straightforward calculation leads to

$$
\begin{equation*}
w(x)=v+\frac{1}{2}-\frac{1}{2} \tanh \left(k_{0} x\right) \tag{39}
\end{equation*}
$$

which produces once again the Pöschl-Teller potential:

$$
\begin{equation*}
\widetilde{V}(x)=-2 k_{0}^{2} \operatorname{sech}^{2} k_{0}\left(x-x_{1}\right) \tag{40}
\end{equation*}
$$

where $\tanh \left(k_{0} x_{1}\right)=1 /(1+2 \nu)$.
Suppose now that $\epsilon=-k^{2} \neq E_{0}, k \in \mathbb{R}$. The solutions with the right asymptotic behaviour are here:

$$
\begin{equation*}
u(x)=\sqrt{2 k} \mathrm{e}^{ \pm k x}\left[k_{0} \tanh \left(k_{0} x\right) \mp k\right] \tag{41}
\end{equation*}
$$

leading to

$$
\begin{equation*}
w(x)=\mp\left\{v+\mathrm{e}^{ \pm 2 k x}\left[k^{2}+k_{0}^{2} \mp 2 k k_{0} \tanh \left(k_{0} x\right)\right]\right\} . \tag{42}
\end{equation*}
$$

It turns out that the confluent 2-SUSY potential $\widetilde{V}(x)$ acquires the Bargmann form

$$
\begin{equation*}
\widetilde{V}(x)=-\frac{2\left(k_{2}^{2}-k_{1}^{2}\right)\left[k_{1}^{2} \operatorname{sech}^{2} k_{1}\left(x-x_{1}\right)+k_{2}^{2} \operatorname{csch}^{2} k_{2}\left(x-x_{2}\right)\right]}{\left[k_{1} \tanh k_{1}\left(x-x_{1}\right)-k_{2} \operatorname{coth} k_{2}\left(x-x_{2}\right)\right]^{2}} \tag{43}
\end{equation*}
$$

where for $k>k_{0}$ we need to take $k_{1}=k_{0}, k_{2}=k, v=\left(k^{2}-k_{0}^{2}\right) \mathrm{e}^{ \pm 2 k x_{2}}, \mathrm{e}^{ \pm 2 k_{0} x_{1}}=$ $\left(k+k_{0}\right) /\left(k-k_{0}\right)$ while for $k<k_{0}$ we require $k_{1}=k, k_{2}=k_{0}, v=\left(k_{0}^{2}-k^{2}\right) \mathrm{e}^{ \pm 2 k x_{1}}, \mathrm{e}^{ \pm 2 k_{0} x_{2}}=$ $\left(k+k_{0}\right) /\left(k_{0}-k\right)$.
(c) Finally, let us analyse the harmonic oscillator potential:

$$
\begin{equation*}
V(x)=x^{2} \tag{44}
\end{equation*}
$$

Figure 1. The confluent 2-SUSY partner potential (black curve) isospectral to the oscillator (grey curve) generated by employing the normalized eigenfunction (45) for $n=3, \epsilon=E_{3}=7$ and $v=-5 / 4$.
which has a purely discrete spectrum composed of $E_{n}=2 n+1, n=0,1, \ldots$ and eigenfunctions given by

$$
\begin{equation*}
\psi_{n}(x)=\left(\sqrt{\pi} 2^{n} n!\right)^{-1 / 2} \mathrm{e}^{-x^{2} / 2} H_{n}(x) \quad n=0,1, \ldots \tag{45}
\end{equation*}
$$

where $H_{n}(x)$ are the Hermite polynomials.
Let us suppose first that $\epsilon=E_{m}$ with m fixed, $u(x)$ being the corresponding normalized eigenfunction $\psi_{m}(x)$ of (45). The calculation of (19) with $x_{0}=0$ leads to

$$
\begin{align*}
w(x)=v+\frac{1}{2} & -x \sum_{s=0}^{m_{0}} \frac{(-1)^{m_{0}+s} \Gamma\left(m_{1}\right)(2 x)^{2 m_{1}-2 s-1}}{2^{\delta+1} \sqrt{\pi}\left(m_{1}-s\right) \Gamma\left(\delta+\frac{1}{2}\right)(m-2 s)!s!} \\
& \times{ }_{2} F_{2}\left(m_{1}, m_{1}-s ; \delta+\frac{1}{2}, m_{1}+1-s ;-x^{2}\right) \tag{46}
\end{align*}
$$

where ${ }_{2} F_{2}\left(a_{1}, a_{2} ; b_{1}, b_{2} ; z\right)$ is a generalized hypergeometric function [23], $m_{0}=(m-$ $\delta) / 2, m_{1}=(m+\delta+1) / 2, \delta=0$ if m is even but $\delta=1$ if m is odd. It turns out that $\widetilde{V}(x)$ is isospectral to the oscillator potential, a case illustrated in figure 1 for $\epsilon=7(m=3)$ and $v=-5 / 4$. Let us note the already involved explicit expression of $w(x)$ in (46).

In turn, for $\epsilon \notin \mathrm{Sp}(H)$ the asymptotically vanishing Schrödinger solutions become
$u(x)=\mathrm{e}^{-\frac{x^{2}}{2}}\left[{ }_{1} F_{1}\left(\frac{1-\epsilon}{4}, \frac{1}{2} ; x^{2}\right) \pm 2 x \frac{\Gamma\left(\frac{3-\epsilon}{4}\right)}{\Gamma\left(\frac{1-\epsilon}{4}\right)}{ }_{1} F_{1}\left(\frac{3-\epsilon}{4}, \frac{3}{2} ; x^{2}\right)\right]$
where ${ }_{1} F_{1}(a, c ; z)$ is the Kummer hypergeometric series. The explicit expression for $w(x)$ is too involved to be shown here (three infinite sums of kind (46) arise in this case). Alternatively, we performed a numeric calculation of $\widetilde{V}(x)$ for $\epsilon=8$ taking the solution $u(x)$ of (47) with the upper plus sign and $w_{0}=-5, x_{0}=0$ in (19) (see figure 2). The spectrum of $\widetilde{V}(x)$ is composed of the oscillator eigenenergies $E_{n}=2 n+1, n=0,1, \ldots$ plus a new level at $\epsilon=8$. This illustrates clearly the possibility offered by the confluent 2-SUSY algorithm of creating one single level above the ground state energy of H.

We conclude that the second-order supersymmetric quantum mechanics is a powerful tool for designing in a simple way potentials with given spectra, a subject supplying us with solvable models with possible applications in the physical sciences (see e.g. [24]).

Figure 2. The confluent 2-SUSY partner potential $\widetilde{V}(x)$ (black curve) of the oscillator (grey curve) generated by employing the Schrödinger solution (47) with the upper + sign and $\epsilon=8, w_{0}=-5, x_{0}=0$. The potential $\widetilde{V}(x)$ has an extra bound state at $\epsilon=8$ compared with the oscillator spectrum.

Acknowledgment

The support of CONACYT (México) is acknowledged. One of the authors (ESH) also acknowledges the financial support of the Instituto Politecnico Nacional.

References

[1] Andrianov A A, Ioffe M V and Spiridonov P V 1993 Phys. Lett. A 174273
[2] Andrianov A A, Ioffe M V, Cannata F and Dedonder J P 1995 Int. J. Mod. Phys. A 102683
[3] Samsonov B F 1996 Mod. Phys. Lett. A 111563
[4] Fernández D J 1997 Int. J. Mod. Phys. A 12171
[5] Fernández D J, Glasser M L and Nieto L M 1998 Phys. Lett. A 24015
[6] Rosas-Ortiz J O 1998 J. Phys. A: Math. Gen. 31 L507 Rosas-Ortiz J O 1998 J. Phys. A: Math. Gen. 3110163
[7] Díaz J I, Negro J, Nieto L M and Rosas-Ortiz O 1999 J. Phys. A: Math. Gen. 328447
[8] Aoyama H, Nakayama N, Sato M and Tanaka T 2001 Phys. Lett. B 521400
[9] Samsonov B F 1999 Phys. Lett. A 263274
[10] Fernández D J, Negro J and Nieto L M 2000 Phys. Lett. A 275338
[11] Fernández D J, Mielnik B, Rosas-Ortiz O and Samsonov B F 2002 Phys. Lett. A 294168
[12] Fernández D J, Mielnik B, Rosas-Ortiz O and Samsonov B F 2002 J. Phys. A: Math. Gen. 354279
[13] Fernández D J, Muñoz R and Ramos A 2003 Phys. Lett. A 30811
[14] Mielnik B, Nieto L M and Rosas-Ortiz O 2000 Phys. Lett. A 26970
[15] Márquez I F, Negro J and Nieto L M 1998 J. Phys. A: Math. Gen. 314115
[16] Abraham P B and Moses H E 1980 Phys. Rev. A 221333
[17] Nieto M M 1984 Phys. Lett. B 145208
[18] Sukumar C V 1985 J. Phys. A: Math. Gen. 182937
[19] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[20] Zakhariev B N and Suzko A A 1990 Direct and Inverse Problems. Potentials in Quantum Scattering (Berlin: Springer)
[21] Pappademos J, Sukhatme U and Pagnamenta A 1993 Phys. Rev. A 483525
[22] Stahlhofen A A 1995 Phys. Rev. A 51934
[23] Erdélyi A 1953 Higher Transcendental Functions vol 1 (New York: Mc-Graw Hill)
[24] Drigo-Filho E and Ruggiero J R 1997 Phys. Rev. E 564486

